skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Syed, Ahmed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arabnia, Hamid; Deligiannidis, Leonidas; Tinetti, Fernando; Tran, Quoc-Nam (Ed.)
    Millions of people with hearing disabilities use sign language for communication, creating a communication gap with those who are not fluent in ASL (American Sign Language). This paper aims to introduce an ASL interpreter system using a smart-glasses-based augmented reality system. We begin by introducing and comparing two models that translate spoken language into ASL poses. The first system translates spoken text to ASL Gloss, an intermediate representation, before generating ASL poses. The second system directly translates the text to ASL poses. Our analysis shows that using ASL Gloss as an intermediate step significantly improves the translation speed. We then explore a system of encoding ASL pose videos for display on smart glasses. The chosen translation method has a BLEU score of 66.5801 and a rate of 1.825 milliseconds per gloss translation. Our algorithm for mapping gloss text to ASL videos obtained a mean squared error of 0.05, indicating that our system has good translational accuracy and a low mapping error. 
    more » « less
  2. Traditional methods for synthesizing InGaN quantum dots (QDs), such as the Stranski-Krastanov growth, often result in QD ensembles with low density and non-uniform size distribution. To overcome these challenges, forming QDs using photoelectrochemical (PEC) etching with coherent light has been developed. Anisotropic etching of InGaN thin films is demonstrated here with PEC etching. InGaN films are etched in dilute H2SO4 and exposed to a pulsed 445 nm laser with a 100 mW/cm2 average power density. Two potentials (0.4 V or 0.9 V) measured with respect to an AgCl|Ag reference electrode are applied during PEC etching, resulting in different QDs. Atomic force microscope images show that while the QD density and sizes are similar for both applied potentials, the heights are more uniform and match the initial InGaN thickness at the lower applied potential. Schrodinger-Poisson simulations show that polarization-induced fields in the thin InGaN layer prevent positively charged carriers (holes) from arriving at the c-plane surface. These fields are mitigated in the less polar planes resulting in high etch selectivity for the different planes. The higher applied potential overcomes the polarization fields and breaks the anisotropic etching. 
    more » « less
  3. Near-infrared electroluminescence of InGaN quantum dots (QDs) formed by controlled growth on photoelectrochemical (PEC) etched QD templates is demonstrated. The QD template consists of PEC InGaN QDs with high density and controlled sizes, an AlGaN capping layer to protect the QDs, and a GaN barrier layer to planarize the surface. Scanning transmission electron microscopy (STEM) of Stranski–Krastanov (SK) growth on the QD template shows high-In-content InGaN QDs that align vertically to the PEC QDs due to localized strain. A high-Al-content Al 0.9 Ga 0.1 N capping layer prevents the collapse of the SK QDs due to intermixing or decomposition during higher temperature GaN growth as verified by STEM. Growth of low-temperature (830°C) p-type layers is used to complete the p-n junction and further ensure QD integrity. Finally, electroluminescence shows a significant wavelength shift (800 nm to 500 nm), caused by the SK QDs’ tall height, high In content, and strong polarization-induced electric fields. 
    more » « less
  4. Three triorganotin (IV) cyclopentane carboxylates were synthesized and structurally characterized by in solid state by Fourier‐transform infrared spectroscopy and single crystal diffraction, and in solution by NMR (1H,13C, and119Sn) spectroscopy. The complexes were tested for their anticancer activity against MCF‐7 and HeLa cells along with normal BHK‐21 cells. As revealed by MTT assay, complex2was identified as the most potent derivative with an IC50value of 2.59 and 0.051 μM against HeLa and MCF‐7 cells, respectively. The results were compared with cisplatin as reference drug. Fluorescent microscopic studies using 4′,6‐diamidino‐2‐phenylindole (DAPI) and propidium iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active complex2. The complex2also triggered the release of lactate dehydrogenase (LDH) in treated HeLa and MCF‐7 cells whereas a luminescence assay displayed a remarkable increase in the activity of caspase‐9 and ‐3. Moreover, flow cytometric results revealed that complex2caused G0/G1 arrest in the treated HeLa cells. The complexes were further screened for DNA binding studies through UV‐vis spectroscopy and cyclic voltammetry. The high activity of complex2was attributed to its higher Lewis acidity as indicated by natural bond orbital (NBO) analysis. Theoretical modelling and molecular docking studies were also conducted to study the reactivity of complexes againstVEGFR 2 Kinase. 
    more » « less